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I rVTRODUCTIOFl 

Past experience has shown t h a t  s t r u c t u r a l  damage and design-based inc lus ions  such as 
cu tou ts  can reduce s i g n i f i c a n t l y  t h e  s t rength  o f  graphite-epoxy laminates ( r e f .  1). 
One composite mechani cs research a c t i v i t y  a t  t h e  Langley Research Center i s  t o  assess 
and improve t h e  performance o f  composite s t ruc tu res  damaged by impact o r  con ta in ing  
l o c a l  d i s c o n t i n u i t i e s  such as cutouts. Reductions i n  s t rength  are  common t o  both 
tens ion  and compression loaded laminates, however, t h e  problem associated w i t h  com- 
press ion performance has been found t o  be t h e  most i l l u s i v e  t o  solve. Compression 
f a i l u r e  invo lves  both shear c r i p p l i n g  and delamination modes. Small-scale coupon 
t e s t s  have no t  y e t  been developed which adequately p r e d i c t  damaged-laminate compres- 
s ion  performance reductions. Two p l a t e  specimen conf igura t ions ;  however, have been 
developed by NASA ( re f .  2) t o  he lp  de f i ne  t h e  s e v e r i t y  of t h e  compression s t reng th  
reduc t ion  problem and t o  assess t h e  r e l a t i v e  m e r i t  o f  proposed toughened mate r ia l  
systems. These two t e s t  con f igura t ions ,  one i n v o l v i n g  impact damage and t h e  o ther  
open ho le  specimens, are shown i n  f i g u r e  1. The t e s t  technique f o r  impact specimens 
invo lves  damaging t h e  p l a t e  a t  se lec ted  energies, measuring t h e  s i z e  o f  damage by 
u l t r a s o n i c  6-scan techniques and measuring t h e  res idua l  s t rength  i n  a compression 
load t e s t .  Open-hole specimen compression t e s t s  are conducted f o r  several d i f f e r e n t  
ho le  diameters and t h e  f a i l u r e  s t r a i n  and load and mode o f  f a i l u r e  recorded. The 
p l a t e  specimen used i n  these t e s t s  i s  designed w i t h  length, width, th ickness and 
laminate s t i f f n e s s  t o  ensure t h a t  o v e r a l l  p l a t e  buck l ing  i s  not responsib le  f o r  
i n i t i a t i n g  f a i  l u re .  
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TEST SPECIMENS AND FIXTURE 

I n  t h e  cur ren t  i nves t i ga t i on ,  several new graphite-epoxy mater ia l  systems proposed 
fo r  improved damage-tolerance d l i s t e d  i n  f i gu re  2 were studied. Ma te r ia l  para- 
meters inc luded both tough r e s i n  formulat ions and h igh  s t r a i n  f ibers .  Mater ia l  
supp l ie rs  inc luded Narmco (T300 f i b e r  and 5208 res in ) ,  American Cyanamide (BP907 
res in ) ,  and Hercules (AS4 and AS6 f i b e r s  and 3502, 2220-1, and 2220-3 res in ) .  U l t i -  
mate t e n s i l e  s t r a i n s  f o r  these f i b e r s  a re  approximately: 1.2% - T300, 1.4% - AS4 
and 1.8% - AS6. The T300/5208 mate r ia l  i s  used as a base l ine  and T300/BP907 was 
i dent i f i ed i n past sudi es as exhi  b i t i n g  improved damaged o l  erance charac ter i  s t  i c s  
( re f .  3). A l l  t e s t s  were conducted a t  room temperature and; therefore, do no t  
address t h e  reduct ion i n  s t reng th  o f  r e s i n  ma te r ia l s  such as BP907 caused by mois ture 
and e levated temperatures. Quas i - i so t rop i c  laminate specimens approximately 0.25 
inches t h i c k  and 10 inches long by 5 inches wide were t e s t e d  i n  t h e  f i x t u r e  shown i n  
f i g u r e  2. The f i x t u r e  imposed near l y  clamped boundary cond i t ions  on t h e  loaded ends 
and simple support boundary cond i t i ons  on t h e  l a t e r a l  edges. Two se ts  o f  s t r a i n  
gages mounted back-to-back were used t o  measure t h e  a x i a l  s t r a i n .  

F igure  2 
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LAMINATE DAMAGE FOLLOWIQlG IMPACT 

\An i l l u s t r a t i o n  o f  t h e  i n f l uence  t h e  r e s i n  mater ia l  has on t h e  s i z e  and ex ten t  o f  
damage i n  a graphite-epoxy laminate r e s u l t i n g  from p r o j e c t i l e  impact i s  shown i n  
f i g u r e  3 .  The damage f o l l o w i n g  impact by a 1/2-inch diameter aluminum sphere a t  
approximately 13 f t - l b  o f  energy i s  shown on t h e  t o p  row f o r  a b r i t t l e  behavior 
r e s i n  and on t h e  bottom row f o r * a  toughened r e s i n  system. 
i s  approximately 0.25-inch t h i c k .  
r i a l  by v i sua l  observation o f  sur face damage, by u l t r a s o n i c  C-scan inspec t ion  and 
by microscopic inspec t ion  o f  a cross-sect ion through t h e  impact damage zone. This  
demonstration shows, there fore ,  t h a t  it i s  poss ib le  t o  t a i l o r  t h e  ma t r i x  ma te r ia l  
p roper t i es  t o  reduce t h e  s i z e  o f  damage f o l l o w i n g  p r o j e c t i l e  impact. 

The o r t h o t r o p i c  laminate 
Less damage i s  observed f o r  t h e  tough r e s i n  mate- 

F igure 3 
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EFFECT OF IMPACT ENERGY ON DAMAGE S I Z E  

A p l o t  o f  t h e  damage area measured us ing u l t r a s o n i c  C-scan signatures f o r  several  
mater ia l  systems i s  presented i n  f i g u r e  4 as a f u n c t i o n  of t h e  p r o j e c t i l e  impact 
v e l o c i t y  and energy. The th resho ld  energy a t  which damage can f i r s t  be detected 
v a r i e s  f o r  t h e  mater ia ls  studied, however, a l l  are i n  t h e  range o f  t h r e e  t o  f i v e  
f t - l b s .  The l a r g e s t  damage s i z e  was measured f o r  t h e  T300/914 mater ia l .  One v a r i -  
ab le f o r  t h i s  mater ia l  d i f f e r e n t  from t h e  other  mater ia ls  was t h a t  a t h i c k e r  prepreg 
tape was used r e s u l t i n g  i n  approximately h a l f  as many p l i e s  f o r  the  0.25-inch t h i c k  
laminate. The e f f e c t  o f  lamina th ickness i s  not  establ ished. The r e s u l t s  o f  several 
o f  t h e  mater ia ls  f a l l  w i t h i n  a r e l a t i v e l y  narrow band f o r  t h e  energies studied. 
There appears t o  be a divergence o f  t h e  resu l ts ,  however, a t  t h e  upper energy l e v e l s ,  
a t r e n d  which m e r i t s  f u r t h e r  study. 
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IMPACT INITIATED COMPRESS108 FAILURE MODES 

Experimental s tud ies have shown t h a t  t h e  f a i l u r e  o f  damaged composite laminates 
loaded i n  compression invo lves  two primary f a i l u r e  mechanisms; delaminat ion and 
t ransverse shear ( r e f .  4 ) .  These two f a i l u r e  mechanisms are  i l l u s t r a t e d  i n  f i g u r e  5 
f o r  a b r i t t l e  r e s i n  laminate and fo r  a damage-tolerant tough r e s i n  laminate. The 
photographs on t h e  r i g h t  o f  t h e  f i g u r e  show cross-sect ions o f  f a i l u r e  regions which 
are t y p i c a l  f o r  these two classes of mater ia l .  The b r i t t l e  r e s i n  laminate shows 
considerable evidence o f  delaminat ion whereas t h e  tough r e s i n  laminate cross-sect ion 
i s  character ized by a through-the-thickness shear band which i s  approximately 0.07- 
i n c h  wide. Closer inspect ion reveals,  however, t h a t  both specimens a c t u a l l y  e x h i b i t  
both delaminat ion and t ransverse shear f a i l u r e  mechanisms. The t ransverse shear 
f a i l u r e  mode f o r  t h e  b r i t t l e  r e s i n  laminate develops i n  on ly  a few p l i e s  before 
delaminat ion occurs; w h i l e  t h e  t ransverse shear mode f o r  tough r e s i n  laminates i s  
several p l i e s  t h i c k  before i t  i s  i n t e r r u p t e d  by delaminat ion caused by wedges o f  
f a i l e d  mater ia l  p r y i n g  apar t  t h e  p l i e s .  Tough r e s i n  formulat ions improve damage 
to le rance by suppressing t h e  delaminat ion mode o f  f a i l u r e  p e r m i t t i n g  f a i l u r e  t o  
occur a t  t h e  next h igher  energy mode i n v o l v i n g  t ransverse shear. 

F igure 5 
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PROPAGATIOR O f  IMPACT ItvDUCED DELAMIRATION 

The sequence o f  events which occurs when a b r i t t l e  r e s i n  i s  damaged by impact and 
subsequently loaded i n  compression t o  f a i l u r e  i s  shown i n  f i g u r e  6. The moire f r i n g e  
photographs show t h e  l o c a l  out-of-plane deformations of t h e  laminate i n  t h e  impact 
damaged region, Photographs presented l e f t  t o  r i g h t  correspond t o  inc reas ing  load 
up t o  u l t i m a t e  a t  which damage propagates from t h e  center  o f  t h e  panel t o  t h e  two 
l a t e r a l  edges. Sublaminates caused by impact-induced delaminations have reduced 
bending s t i f f n e s s e s  compared t o  t h e  undamaged laminate and, i f  s u f f i c i e n t l y  large,  
buck le a t  s i g n i f i c a n t l y  lower loads than t h e  o v e r a l l  p l a t e  buckles. Thes 
buckles represented by t h e  moire f r i n g e  contours cause h igh  s t resse i n  t h e  r e s i n  a t  
t h e  delamination boundary. , these stresses 
cause f r a c t u r e  o f  t h e  r e s i n  and t h e  damage propagates. 

When t h e  buckle i s  s u f f i c i e n t l y  advanc 

F igure  6 



7 

SHEAR CRIPPLING FAILURE MODE 

The shear c r i p p l i n g  mode o f  f a i l u r e  occurs not  on ly  a t  t h e  macroscopic sca le as 
i l l u s t r a t e d  i n  f i g u r e  5 but  a l so  on t h e  microscopic sca le i n v o l v i n g  i n d i v i d u a l  
g raph i te  f i b e r s  as i l l u s t r a t e d  i n  f i g u r e  7, This  tough r e s i n  o r t h o t r o p i c  laminate 
was damaged by impact and loaded u n t i l  t h e  damage began t o  propagate across t h e  
panel. The damage propagation arrested;  t h e  l oad  was removed and a cross-section 
was taken through t h e  damaged region. Shown on t h e  r i g h t  o f  f i g u r e  7 i s  a photo- 
micrograph o f  f ou r  o f  t h e  i n t e r i o r  p l i e s  [45/02/-45] o f  t h e  48-ply laminate. 
Graphite f i b e r s  i n  t h e  zero degree p l i e s  (a l igned co inc ident  w i t h  t h e  app l ied  load)  
f a i l e d  by shear c r i p p l i n g  wh i l e  f i b e r s  o r i en ted  a t  45-degrees are undamaged. The 
model proposed t o  exp la in  t h i s  phenomenon i s  t h a t  t h e  s t r a i n  concentrat ion i n  zero- 
degree p l i e s  loca ted  i n  t h e  damage zone and t h e  reduced support t o  t h e  f i b e r s  due t o  
m a t r i x  f rac tu re  causes t h e  graph i te  f i b e r s  t o  microbuckle. 
occurs when t h e  a x i a l  p lus  pos tbuck l ing  bending s t r a i n s  reach a c r i t i c a l  value. 

Fracture o f  t h e  f i b e r  

F igure 7 
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FAILURE OF OPEi’i-HOLE SPECIMER LOADED I N  COMPRESSION 

A se r ies  of photographs showing t h e  i n i t i a t i o n  and propagation o f  delamination f o r  
an open ho le  specimen loaded i n  compression i s  shown i n  f i g u r e  8. A t  95.2% o f  t h e  
u l t i m a t e  load, moire f r i n g e  photographs show no evidence of delamination around t h e  
ho le  boundary. A t  95.43, l o c a l  f r inges  appear and grow i n  s i z e  w i t h  increas ing load 
as can be seen comparing t h e  photographs a t  95.9% and 98.1% o f  u l t ima te .  U l t ima te  
f a i l u r e  occurs when damage propagates completely across t h e  reduced sec t ion  o f  t h e  
p la te .  One might conclude based on t h i s  evidence t h a t  t h e  i n i t i a t i n g  f a i l u r e  mode 
f o r  open ho le  specimens i s  delamination; however, as w i l l  be shown i n  t h e  next 
f i gu re ,  microscopic shear c r i p p l i n g  occurs i n  t h e  v i c i n i t y  o f  t h e  ho le  boundary i n  
advance o f  del ami na t i on  e 

Figure  8 
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SHEAR CRIPPLING INITIATES OPEh-HOLE SPECIMEh FAILURE 

Another specimen s i m i l a r  t o  t h e  one shown i n  f i g u r e  8 was loaded t o  a load l e v e l  
j u s t  p r i o r  t o  t h e  i n i t i a t i o n  o f  delaminat ion (approximately 92% of u l t ima te )  and 
unloaded. A small b lock o f  ma te r ia l  adjacent t o  the  hole boundary was cu t  from the  
specimen and surface mater ia l  sanded away t o  expose an i n t e r i o r  O-degree layer .  
Scanning e lec t ron  photomicrographs of t h i s  reg ion are shown on the  r i g h t  o f  f i g u r e  
9. Damage i s  t h e  same f a i l u r e  o f  i n d i v i d u a l  g raph i te  f i b e r s  by shear c r i p p l i n g  
which was shown e a r l i e r  i n  f i gu re  7 f o r  t h e  compression f a i l u r e  of impact-damaged 
laminates. The h igher  magn i f i ca t ion  photomicrograph shows t h e  f a i l e d  f i b e r  leng th  
t o  diameter r a t i o  t o  be approximately four .  The proposed f a i l u r e  model i s  t he  
same as proposed e a r l i e r ,  i.e., g raph i te  f i be rs  microbuckle i n  t h e  h igh  s t r a i n  con- 
cen t ra t i on  reg ion  adjacent t o  t h e  ho le  and f a i l  i n  t h e  post-buckled s tate.  

F igure  9 
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IMP ACT-D AMAG-E FA1 LURE THRESHOLD CU RV E 

t h e  laminate survived t h e  less  severe c 
e. A severe reduction i n  strength occu 

reduced t o  approximately 0.0028. 
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TOUGH RESIlt  IMPROVES LAMIHATE DAMAGE TOLERAlVCE 

F a i l u r e  th resho ld  curves f o r  a 48-ply o r t h o t r o p i c  graphite-epoxy laminate const ructed 
us ing  two d i f f e r e n t  r e s i n  systems are shown i n  f i g u r e  
cond i t ions  studied, t h e  tough BP907 r e s i n  system shows 
t i v e  t o  t h e  b r i t t l e  5208 r e s i n  system. 
f o r  a 5208 r e s i n  laminate when i t  was re in fo rced  by through-the-thickness s t i t c h i n g .  
The explanat ion f o r  t h i s  improvement i s  t h a t  both t h e  tough r e s i n  system and 
s t i t c h i n g  suppress t h e  delamination mode o f  f a i l u r e .  
f a i l u r e  has been s tud ied  us ing  f r a c t u r e  toughness t e s t s  such as t h e  double c a n t i l e v e r  
beam. 
s t reng th  and f r a c t u r e  toughness measurements f o r  ma te r ia l  systems w i t h  widely  vary ing  
f r a c t u r e  toughness p roper t i es  such as t h e  ma te r ia l s  compared i n  f i g u r e  11. 
i n  f i g u r e  7, however, shear c r i p p l i n g  i s  a l so  i n v o l v  d i n  t h e  f a i l u r e  o f  impact- 
damaged laminates and f r a c t u r e  toughness t e s t s  do no address t h i s  mode o f  f a i l u r e .  

f. 4). For t h e  t e s t  

S i m i l a r  improve 

The delamination mode o f  

Success has been achieved a t  c o r r e l a t i n g  improved compression a f t e r  impact 
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EFFECT OF SIZE OF IMPACT DAMAGE Oh FAILURE STRAIm 

s ts  f o r  a comparison method which the  composite s t ruc tu re  
s t h e  e f fec t  o f  var ious impact cond i t ions  and mater ia  

Trends f o r  t e s t  data i n  which inc reas ing  s t rength  
increas ing impact damage s i z e  suggested t h e  parame 

i n  f i g u r e  12. The f a i l u r e  s t r a i n  f o r  several d i f f e  
d i n  a quas i - i so t rop i c  laminate i s  p l o t t e d  as a func t i on  o f  t he  w id th  of 
u l t i n g  from impact. The damge w id th  was determined from u l t r a s o n i c  C-scan 
s and i s  nopmalized by t h e  specimen w id th  (5-inches). For t 
condi t ions,  t h e  s i z e  of damage appears t o  be a parameter t h a t  reduces t h e  

t e s t  data f a r  a l l  four ma te r ia l s  t o  a comman curve. Atwo-parameter curve asymptotic 
t o  a/w = ,24 has been drawn through the  data. A l a rge  reduct ion i n  s t rength  occurs 
around a/w = ,24 and the  f a i l u r e  s t r a i n  f o r  a/w < .24 i s  governed by cond i t ions  o ther  
than impact such as p l a t e  buckl ing.  Addi t ional  study i s  requ i red  t o  assess the  
genera l i za t ion  of t h i s  data t o  o ther  impact cond i t ions  and laminates. 
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OPEN-HOLE COMPRESSION SPECIMEHS 

A series of 5-inch-wide and 10-inch-long quasi-isotropic specimens with selected 
centrally located holes were tested for several different material systems. Photo- 
graphs of some of these specimens are presented in figure 13. 

Figure 13 
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STRESS-STRAIN RESPOkSE FOR OP EN-HOLE SP ECIMErLS 

The s t r e s s - s t r a i n  response up t o  f a i l u r e  f o r  AS4/2220-3 q u a s i - i s o t r o p i c  5-inch-wide 
specimens w i t h  se lected a/w ho le  s izes  i s  presented i n  f i g u r e  14. S t r a i n  
taken from s t r a i n  gages loca ted  near one end o f  t h e  specimen. For l a r g e  h 
s t r e s s - s t r a i n  response dev iates from t h e  no-hole (a/w = 0) curve. For purposes o f  
data comparison, t h e  f a i l u r e  s t r a i n  f o r  open-hole specimens repor ted i n  subsequent 
f i g u r e s  i s  t h e  s t r a i n  which t h e  no-hole specimen c a r r i e d  a t  t h e  same s t r e s s  t h a t  
t h e  open-hole specimens c a r r i e d  a t  f a i l u r e .  
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EFFECT OF CIRCULAR HOLES ON COMPRESSIOh STRENGTH 

A comparison o f  t h e  reduct ion i n  s t rength  f o r  a b r i t t l e  (T300/5208) and tough (T300/ 
RP907) r e s i n  system laminate i s  presented i n  f i g u r e  15 as a func t ion  o f  t h e  ho le  
diameter ''a" normalized by t h e  specimen width "w" ( r e f .  4). The curve f a i r e d  through 
t h e  data i s  a f a i l u r e  p r e d i c t i o n  base on t h e  po in t -s t ress  f a i l u r e  c r i t e r i o n  proposed 
by Whitney and kuismer ( r e f .  5). 
no tch- insens i t i ve  curve and on t h e  bot ton by a notch-sensi t ive curve i n  which f a i l u r e  
i s  assumed t o  occur when t h e  s t r e s s  a t  t h e  hole edge reaches the  c r i t i c a l  value f o r  
an unnotched specimen. The d i f f e r e n t  r e s i n  formulat ions appear t o  have had no e f f e c t  
on t h e  f a i l u r e  s t r a i n  f o r  these two o r t h o t r o p i c  laminates. The explanat ion f o r  t h i s  
apparent paradox i n  which t h e  tough r e s i n  improved t h e  s t rength  o f  impact damaged 
specimens ( f i g .  11) but no t  open-hole specimens invo lves  understanding t h e  governing 
f a i l u r e  mechanisms. 
suppressing t h e  delamination mode of f a i l u r e .  
i n  f i g u r e  9, t h e  f a i l u r e  i n i t i a t i o n  mechanism involves f i b e r  microbuckl ing and shear 
c r i p p l i n g  o f  h i g h l y  stressed mater ia l  adjacent t o  t h e  hole.  
governed by t h e  s t i f f n e s s  p r o p e r t i e s  o f  t h e  m a t r i x  and f i b e r  and by o ther  f a c t o r s  
such as the  i n t e g r i t y  o f  t h e  m a t r i x - t o - f i b e r  bond. 
these two mater ia l  systems w i t h  holes occur s ince t h e  same f i b e r  was used i n  both 
laminates and because t h e  two r e s i n  systems have s i m i l a r  i n i t i a l  e l p s t i c  modulus 
p r o p e r t i e s  . 

The curve i s  bounded on t h e  t o p  by a net-area 

For impact damage, tough res ins  improved t h e  performance by 
For open ho le  specimens,as was shown 

F iber  microbuckl ing i s  

S i m i l a r  s t rength reduct ions f o r  
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Figure 15 
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EFFECT OF HIGH STRAIN FIBER ON FAILURE STRAIN OF OPEN-HOLE SPECIMEkS 

The in f l uence  o f  ho le  s i z e  ''a/w" on t h e  f a i l u r e  s t r a i n  of several quas i - i so t rop i c  
laminates const ructed w i t h  se lec ted  r e s i n  systems and two graph i te  f i b e r  ma te r ia l s  
i s  presented i n  f i g u r e  16. The two t h e o r e t i c a l  f a i l u r e  curves are  p o i n t  s t ress  
f a i l u r e  p red ic t i ons  w i t h  t h e  i n d i c a t e d  c h a r a c t e r i s t i c  parameters, The lower theore- 
t i c a l  curve i s  taken from reference 6 and represents t h e  best  f i t  t o  date f o r  T300/ 
5208 graphite-epoxy. The data appear t o  group according t o  f i b e r  reinforcement type  
w i t h  t h e  AS4 f i b e r  laminates e x h i b i t i n g  h igher  f a i l u r e  s t r a i n  than T300 f i b e r  l a m i -  
nates. The u l t i m a t e  tens ion  s t r a i n s  f o r  T300 and AS4 are  approximately 0.012 and 
0.015, respec t ive ly .  Recall  from f i g u r e  15 t h a t  laminates w i t h  two d i f f e r e n t  r e s i n  
systems and t h e  same f i b e r  had i d e n t i c a l  strengths. I f  as hypothesized, h igh bending 
s t r a i n s  i n  a buckled f i b e r  i n i t i a t e  l o c a l  f a i l u r e ,  then one might expect a h igher  
tens ion  s t r a i n  f i b e r  t o  e x h i b i t  a h igher  laminate s t rength  as was observed i n  t h i s  
se r ies  o f  t e s t s .  Several ma te r ia l  and s t r u c t u r a l  p roper t i es  govern f i b e r  micro- 
buck l i ng  and f a i l u r e  i n c l u d i n g  t h e  f i b e r  extensional and bending s t i f f n e s s e s  and 
s t rength  and t h e  s t i f f n e s s  and s t reng th  p roper t i es  of t h e  matr ix .  Theore t i ca l l y ,  
a h igh  shear modulus proper ty  o f  t h e  r e s i n  should a l so  increase t h e  s t r a i n  a t  which 
microbuck l ing would occur. 
press ion s t rength  need t o  be b e t t e r  understood i n  order  t o  b e t t e r  t a i l o r  mater ia l  
and laminate p roper t i es  f o r  optimum performance. 

A l l  o f  t h e  f a c t o r s  which a f f e c t  microbuck l ing and com- 
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‘QPEh-HOLE VERSUS IMPACT STREhGTH REDUCTIOlY 

Designers o f  composite s t ruc tu res  must address the  e f f e c t s  o f  both holes and impact 
on design al lowables and are i n t e r e s t e d  i n  t h e  range of cond i t ions  i n  which each 
f a c t o r  governs s t r u c t u r a l  performance. A comparison i s  made i n  f i g u r e  17 o f  t h e  
e f f e c t  o f  these two types o f  l o c a l  d i s c o n t i n u i t i e s .  The open hole curves are taken 
from f i g u r e  16 f o r  AS4 and T300 f i b e r  laminates and t h e  impact curve i s  taken from 
f i g u r e  12 i n  which the  damage s i z e  was determined from C-scan measurements. The 
open hole causes t h e  greatest  reduct ion i n  s t rength  fo r  a/w < .3 (w = 5 inches) and 
impact damage causes the  greatest  reduct ion fo r  a/w > .3. 
t o  be def ined f o r  o ther  p l a t e  widths and laminates t o  es tab l i sh  the  genera l i t y  f o r  
design purposes of these f i n d i n g s  . 

AJcfit ional curves need 

.016 

.014 

I012 

. 010 
FA I LURE 
STRAIN, .008 

.@I6 

.004 

E 

E 

USING C-SCAN 

1.0 0 .2  .4 .6 .8 
a/ w 

Figure 17 



18 

1. 

2. 

Tough r e s i n  system can reduce t h e  s i z e  o f  t h e  damage zone caused by impact. 

Delaminat ion and shear c r i p p l i n g  are  two fundamental mechanisms invo lved  i n  t h e  
compression f a i l u r e  o f  graphite-epoxy laminates. 

Tough res ins  (compared t o  b r i t t l e  res ins )  can improve t h e  compression s t reng th  
o f  impact-damaged laminates by suppressing t h e  delaminat ion mode o f  f a i l u r e ,  

Tough res ins  do no t  p rov ide  s i m i l a r  improvement i n  t h e  performance o f  laminates 
w i th  open holes where shear c r i p p l i n g  i s  t h e  dominant f a i l u r e  mechanism, 

s 

3 .  

4. 

5. Several graphite-epoxy ma te r ia l  systems were found t o  e x h i b i t  common s t reng th  
reduct ions f o r  equal s i z e  impact damage. 

Higher s t r a i n  f i b e r  prov ided increase i n  f a i l u r e  s t r a i n  of open ho le  specimens. 6. 
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